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Bead-Fourier path integral molecular dynamics
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Molecular dynamics formulation of Bead-Fourier path integral method for simulation of quantum systems at
finite temperatures is presented. Within this scheme, both the bead coordinates and Fourier coefficients, defin-
ing the path representing the quantum particle, are treated as generalized coordinates with corresponding
generalized momenta and masses. Introduction of the Fourier harmonics together with the center-of-mass
thermostating scheme is shown to remove the ergodicity problem, known to pose serious difficulties in stan-
dard path integral molecular dynamics simulations. The method is tested for quantum harmonic oscillator and
hydrogen atom~Coulombic potential!. The simulation results are compared with the exact analytical solutions
available for both these systems. Convergence of the results with respect to the number of beads and Fourier
harmonics is analyzed. It was shown that addition of a few Fourier harmonics already improves the simulation
results substantially, even for a relatively small number of beads. The proposed Bead-Fourier path integral
molecular dynamics is a reliable and efficient alternative to simulations of quantum systems.
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I. INTRODUCTION

Path integral~PI! simulation techniques, based on Fey
man path integral formalism@1# provide a powerful tool to
study quantum many-body systems. The quantum parti
function can be presented as an imaginary-time path inte
@1,2#, formally equivalent to the configurational integral ov
closed trajectories, or paths. The PI formalism is exact
straightforward to use for systems of interacting quant
particles but it requires, in principle, an infinite number
parameters to define the trajectory. Therefore, finite-num
approximations have to be used to treat the path integra
numerical computer simulations.

Historically, two main branches of approximative met
ods have appeared. In the first, so-called discretized orBead
approximation@3# scheme the trajectory is represented a
‘‘ring polymer,’’ consisting of a finite number of beads con
nected together with harmonic springs. Second, theFourier
approximation@4# method describes the trajectory by a fin
set of Fourier series terms. Further, there exist different v
ants within the two categories~see, for example, Ref.@5# for
Fourier-based approaches!. Coalson@6# has shown that, in
the high-order implementation, i.e., when the number of
rameters representing the trajectory is large, the bead
Fourier approaches are essentially the same. Studies o
relative efficiencies of the different versions of both t
methods@5–8# show that the efficiency can vary substa
tially depending on the particular system and the spec
algorithm.

Recently, a combined Bead-Fourier~BF! Monte Carlo
~MC! method was suggested by Vorontsov-Velyaminov, N
vit, and Gorbunov@9# in which the parts of the trajector
between the beads are presented as a Fourier series. I
shown in this paper and in the subsequent works@10,11# that
by combining the bead and Fourier contributions in an o
mal way, a substantial performance improvement can be
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tained in path integral Monte Carlo~PIMC! simulations.
Typically, the Metropolis Monte Carlo algorithm is use

to sample the trajectories in PIMC simulations. An altern
tive way to generate an ensemble of trajectories with a
nonical probability distribution is to use molecular dynami
~MD! algorithms with a suitable thermostat@12–15#. One of
the reasons of interest to molecular dynamics algorithms
hope to improve sampling over the configurational space
certain cases: for very light particles, where description
quires high numbers of beads, for systems of many ident
particles, etc. For instance, in Ref.@15#, the path integral
molecular dynamics~PIMD! algorithm was applied to de
scribe a solvated electron, a system where several hundre
beads were required.

Another reason for the interest to the PIMD method
that, being formulated ascentroiddynamics, it can describe
real-time dynamics in a semiclassical approximation. T
corresponding formalism has been developed by Cao
Voth in a series of works@16–18#. In their formulation the
motion of the path centroid~i.e., center of mass of the tra
jectory! in an effective~mean force! potential is generated by
all the beads of the path. Centroid dynamics has been sh
to be exact for a harmonic potential and gives a correct c
sical limit. It has been used in a number of applications@19–
22# and also included as an option in the CPMD~Car-
Parrinello molecular dynamics! @23# package, now a
standard tool inab-initio MD simulations.

The purpose of this work is to present a molecular dyna
ics approach for simulations of quantum systems based
Bead-Fourier representation of path integrals. We hope
our BF-PIMD approach would help resolve the difficultie
experienced in using the standard bead algorithm in ca
when the number of required beads rapidly increases, c
ing the springs, connecting the beads, to become sti
Within the MC method this leads to ergodicity problem
caused by the resulting very low probability of moving th
trajectory, while in using the MD approach very short tim
steps are required making the simulations more comp
tional time demanding. It was shown in Ref.@9# within the
©2003 The American Physical Society10-1
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MC framework that after introducing just a few Fourier ha
monics the number of required beads was quite substant
reduced.

A promising method to describe systems consisting
many identical particles was suggested by Miura and O
zaki @24#. They implemented a PIMD algorithm for system
of either fermionic or bosonic identical particles by introdu
ing a pseudopotential between the beads taking into acc
the permutational symmetry.~A similar type of pseudopoten
tial approach was also considered in Ref.@25#.! However,
these approaches again face problems at high numbe
beads. We, therefore, believe that the Bead-Fourier schem
a realistic option to consider.

In this work, we use MD as a tool to generate a canon
ensemble of trajectories, not touching the question of a
namical interpretation within the centroid dynamics. In th
first preliminary study we apply our BF-PIMD method o
two familiar quantum systems for which analytical exact s
lutions are available: harmonic potential~harmonic oscilla-
tor! and Coulombic potential with parameters correspond
to those for a hydrogen atom. Application of our method
systems with several identical particles will appear in sub
quent publications.

The paper is organized as follows. The methodology,
cluding a general formalism and its application on the cho
specific cases, are described in Sec. II. Simulation details
given in Sec. III. Results and discussion are presented in
IV followed by conclusions in Sec. V. Some technical info
mation is given in Appendix A.

II. THEORY

A. The Bead-Fourier approach

The basic idea behind the BF approach is to unite
Bead and Fourier approximations into a single scheme.
consider here quantum particle with a massM confined in an
external potentialV(x). In this section, all the formulas ar
derived for the one-dimensional case, since the genera
tion for the d-dimensional case is trivial. According to th
work of Vorontsov-Velyaminov, Nesvit, and Gorbunov@9#,
the trajectory describing the particle can be presented
number of beads, connected by continuous paths expre
as Fourier sine series:

xj~j!5xj1~xj 112xj !j1 (
k51

kmax

ajk sin~kpj!, ~1!

wherekmax is the maximum number of Fourier series term
j andk are the indexes for the beads and Fourier harmon
correspondingly.xj are the bead coordinates andajk the Fou-
rier amplitudes. Here,xj (j) describes the part of the trajec
tory between the beadsj and j 11 in the imaginary timet
5 j 1j;0,j,1. Then, the partition functionZ of the system
can be written in the form@9#

Z5C~b!E )
j 51

n S dxj )
k51

kmax

dajkD exp@2bH~xj ,ajk!#, ~2!

where the effective HamiltonianH is
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H$xj ,ajk%5(
j 51

n F Mn

2b2\2S ~xj 112xj !
21 (

k51

kmax ~kp!2

2
ajk

2 D
1

1

nE0

1

djV@xj~j!#G ~3!

andC(b) is a normalization constant,

C~b!5S Mn

2b\2D (n/2)(11kmax) kmax!

A2
. ~4!

In Eqs.~3! and~4!, M is the particle mass,n is the number of
beads,b is the inverse temperature (b[1/kT), andV is the
potential energy of the system studied.

The classical object, isomorphic to the quantum particle
then a trajectory in the imaginary time, consisting of bea
connected by harmonic springs~with the equilibrium dis-
tance equal to zero!, while the interaction is distributed alon
the trajectory presented withkmax Fourier series terms in
between the beads.

B. Canonical ensemble molecular dynamics by means
of central mass Nose´-Hoover thermostating scheme

In the original formulation of the BF scheme@9#, the sys-
tem described by Hamiltonian~3! was sampled over the con
figurational space$xj ;ajk% using the MC method. In order to
develop a path integral MD scheme, we treat Hamilton
~3! as a potential energy and introduce the correspond
kinetic terms:

H→H1(
j 51

n F pj
2

2m
1 (

k51

kmax pjk
2

2mk
G . ~5!

Now we treat the bead coordinates$xj% and Fourier ampli-
tudes$ajk% as generalized coordinates and$pj ;pjk% as the
generalized momenta, conjugated to the bead coordin
and Fourier amplitudes, correspondingly. Then the Ham
tonian dynamics is applied in the phase spa
$xj ,pj ;ajk ,pjk% with the bead massm and the ‘‘masses’’ of
the Fourier harmonicsmk . We usem[M /n in order to keep
the mass of the whole object equal to the particle ma
though it is not necessary.

As our purpose is to generate a set of configurations
the system representing a canonical ensemble, we add
Nosé-Hoover thermostat chains to the Hamiltonian equatio
of motion, which can be done in a standard manner@26#.
However, the results for the quantum harmonic oscilla
were far from satisfactory. The classical Hamiltonian~3! in
this case contains only harmonic terms and can be re
sented as a sum ofn independent harmonic oscillators~nor-
mal modes!. For the dynamics of a classical harmonic osc
lator, there exists well-known ergodicity problem@27#,
making the standard single thermostat Nose´-Hoover proce-
dure inapplicable@26#. Our further analysis showed that, e.g
results for the quantum mean energy were unstable dep
ing on the initial conditions and the deviations of the avera
classical kinetic energy of the trajectory were up to 20%. T
0-2
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system lacks ergodicity due to a very slow redistribution
the energy between global and internal movements. To
rect this we therefore suggest independent thermostatin
the mass center of the trajectory.

In the center-of-mass thermostating scheme the total
mentum of the trajectory is thermostated as a separate de
of freedom, while the momenta of the beads are conside
in the system of the mass center and thermostated asn21
degrees of freedom. Thus, we apply two thermostat ch
instead of one. The definitions of the internal and cen
mass momenta, respectively, are

pc[(
j 51

n

pj , pj
int[pj2

pc

n
. ~6!

Following requirements should be satisfied:

K ~pc!2

mn L 5kBT, ~7!

(
j 51

n K ~pj
int!2

m L 5~n21!kBT, ~8!

where T is the temperature,kB is the Boltzmann constant
and ^•••& means the average over the MD simulation.

The Hamiltonian equations of motion together with the
mostating of the bead coordinates are

]pc

]t
5(

j 51

n
]pj

]t
2pc

h1
c

Q1
52(

j 51

n
]H

]xj
2pc

h1
c

Q1
, ~9!

]pj
int

]t
5

]pj

]t
2

1

n

]pc

]t
2pj

int
h1

int

Q1

52
]H

]xj
1

1

n (
j 51

n
]H

]xj
2pj

int
h1

int

Q1
, ~10!

]xj

]t
5

]H

]pj
5

p

m
, ~11!

and for the Fourier amplitudes,

]pjk

]t
52

]H

]ajk
2pjk

h1k

Q1
, ~12!

]ajk

]t
5

]H

]pjk
5

pjk

mk
. ~13!

h1 are Nose´ thermosat momenta for the corresponding d
grees of freedom, which are determined the same way aph
in Ref. @26#.

Here, we have implemented a separate thermostat c
for each set of Fourier harmonics with the same indexk.
Although not quite necessary the masses for all thermo
chains are chosen to be equal, as they work on objects
same masses. Note that Eqs.~11! and ~13! for the bead ve-
locities and Fourier amplitudes are uniform~they do not de-
pend on the Hamiltonian!.
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The expressions for the energy estimators are given
Appendix A.

C. Quantum harmonic oscillator

Here we consider the one-dimensional case since
d-dimensional isotropic oscillator with a separate thermos
chain for each dimension is mathematically equivalent tod
one-dimensional oscillators. The potential energy is

V@xj~j!#5
Mv2xj

2~j!

2
. ~14!

Note that in the case of harmonic oscillator~14! the integral
overj in Eq. ~3! can be evaluated analytically, which is use
in the formulas below.

For a harmonic oscillator it is useful to introduce intrins
units in terms of inverse temperatureb, frequencyv, and
mass of the particleM. Thus, x̃[x/a0 , a0[A\v/Mv2, H̃
[H/\v, t̃[tv. In intrinsic units, quantum oscillator can b
characterized by a single parameterb[b\v.

Hamiltonian~3! in intrinsic units transforms to

H̃5(
j 51

n
n

2b2 S ~ x̃ j 112 x̃ j !
21 (

k51

kmax ~kp!2

2
ã jk

2 D
1

1

n (
j 51

n E
0

1

dj
x̃ j

2~j!

2
. ~15!

After an analytical integration over the potential ener
term in Eq. ~3! the equations of motion with the Nose´-
Hoover thermostat chains become@33#

]pc

]t
52(

j 51

n
1

n Fxj1 (
k51

kmax @ajk2~21!kaj 21,k#

kp G2pc
h1

c

Q1
,

~16!

]pj
int

]t
52

n

b2
~2xj2xj 112xj 21!2

1

n F1

6
~4xj1xj 111xj 21!

1 (
k51

kmax @ajk1~21!k11aj 21,k#

kp G
1

1

n2 F (
j 51

n S xj1 (
k51

kmax @ajk1~21!k11aj 21,k#

kp D G
2pj

int
h1

int

Q1
. ~17!

Note that the sum of the internal forces in Eq.~17! should be
zero, which can be easily proved using the properties of
clic summation.

In the Results and Discussion section, our simulation
sults will be compared with the exact analytical expressio
The mean quantum energy of a harmonic oscillator in intr
sic units is@28#

^H̃&5
d

2
cothFb

2G ~18!

and its quantum coordinate distribution is given by
0-3
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r~x!5~12exp@2b# !exp@2x2# (
n51

`

uHn~x!u2 exp@2bn#,

~19!

whereHn(x) are the Hermite polynomials@28#.

D. Hydrogen atom

Another realistic and analytically solvable quantum s
tem is the hydrogen atom, presented as an electron in
Coulombic potential of a nucleus~proton!. In order to avoid
an infinite negative potential energy at zero distance,
change the Coulombic potential to a parabolic one at
tances less than some cutoff radiusr 0. The parameters of the
potential inside the cutoff are fixed by the condition that t
potential and its first derivative are continuous@9#:

V@r j~j!#55 2
e2

4p«0r j~j!
, r j~j!>r 0

e2

4p«0r 0
S r j

2~j!

2r 0
2

2
3

2D , r j~j!<r 0 ,

~20!

where

r j~j!5A(
i 51

3

xi j
2 ~j!. ~21!

Index i in Eqs. ~20! and ~21! runs over the three spatia
coordinates. Other examples of smoothing potentials are
sented, e.g., in Refs.@29,30#. The latter work is dedicated to
the detailed analysis of the choice of the smoothing poten
and its parameter.

In order to simplify the formulas we introduce the follow
ing notations:

C1~T![
nMkB

2

2\2
T2, C2[

e2

4p«0n
. ~22!

The potential energy now transforms into

Ṽ@r j~j!#55 2
1

r j~j!
, r j~j!>r 0

1

r 0
S r j

2~j!

2r 0
2

2
3

2D , r j~j!<r 0 ,

~23!

while Hamiltonian~3!, generalized to the three dimension
is

H5(
i 51

3 H (
j 51

n FC1~T!S ~xi j 112xi j !
21 (

k51

kmax ~kp!2

2
ai jk

2 D
1C2E

0

1

djṼ@r j~j!#GJ. ~24!

Since the integral in the potential part of Hamiltonian~24!
cannot be evaluated analytically, it has to be calculated
06671
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merically in all formulas here, as well as further on. Befo
presenting the equations of motion with derivatives over
generalized coordinates we observe that

]V~j!

]xi j
5

]V~j!

]xi j ~j!

]xi j ~j!

]xi j
. ~25!

Following the scheme from the preceding section we w
down the Hamiltonian equations of motion~starting from the
caser (j)>r 0):

]pi
c

]t
52C2(

j 51

n E
0

1

dj
xi j ~j!

r j
3~j!

2pi
c
h1i

c

Q1
, ~26!

]pi j
int

]t
52C1~T!@2xi j 2xi j 212xi j 11#

2C2F E
0

1

dj
~12j!xi j ~j!

r j
3~j!

1E
0

1

dj
jxi j 21~j!

r j 21
3 ~j!

G
1

C2

n (
j 51

n E
0

1

dj
xi j ~j!

r j
3~j!

2pi j
int

h1i
int

Q1
. ~27!

The expression for the momenta conjugated with the Fou
amplitudes is

]pi jk

]t
52C1~T!~kp!2ai jk2C2E

0

1

dj
sin~kpj!xi j ~j!

r j
3~j!

2pi jk

h1ik

Q1
~28!

The thermostat chains are created for each dimension s
rately. Thus, there are (kmax12)d thermostat chains in total

If we consider the caser<r 0 all the expressions for the
momenta and kinetic energy estimator will be the same a
the substitution:r j (j)→r 0. The latter can be easily prove
by using Eq.~25!. The potential energy estimator should b
considered separately, since it does not contain derivat
~see Appendix A!.

In this work we only consider the electronic ground sta
of hydrogen atom. The analytical results for the energy a
radial distribution function are@28#

Eground52hcRH ~29!

r~r !5
1

pRB
3

e22r /RB, ~30!

whereRH is the Rydberg constant,RB being the Bohr radius.

III. COMPUTATIONAL DETAILS

The time reversible molecular dynamics algorithm@31#
with the Nose´-Hoover chains of three thermostats was imp
mented in all calculations. In fact, the effect of increasing
thermostat chains length from 2 to 3 is negligible. The sa
0-4
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chain length was found satisfactory in Ref.@14# for thestag-
ing algorithm.

In practical simulations of quantum harmonic oscillat
the simulation parameters are used in intrinsic units, cho
as time stepdt5231023, thermostat massesQ25Q3
50.01,Q15nQ2 , n being the number of beads@26#. Masses
of the Fourier amplitudes were chosen asmk50.5k21. This
corresponds to an approximately equal fluctuation time
all Fourier amplitudes. Typical calculation consisted of
series 23106 steps each. The statistical uncertainty of t
quantum mean energy was within 0.5%.

For the hydrogen atom, the following units were use
Distances were measured in Å, time in femtoseconds, e
gies were converted to eV. Typical values for the simulatio
were time stepdt5231023f s, cutoff radiusr 050.1 Å. The
thermostat masses were chosen to correspond to the the
stat fluctuation time of 1000 molecular dynamics time ste

Numerical integration in the potential energy terms w
carried out according to the trapezoidal rule with the num
of integration steps around 10. The concrete number of
integration steps for the particular numbers of beads
Fourier harmonics could be chosen according to the data
the average distance between the beads and the curvatu
the potential at this point.

For hydrogen atom, the simulations have been carried
at T5104 K. Since the energy gap between the ground a
the first excited state of the hydrogen is about 10 eV~above
105 K), the simulation temperature corresponds essenti
to the ground state@9#.

Typical calculation consisted of 40 series 53105 steps
each. The accuracy of the quantum energy was within 1%
seems interesting that the accuracy remains constant e
for harmonic oscillator or for hydrogen atom independen
of the beads and Fourier harmonics numbers. Note that
certainty for Coulombic potential was twice higher than f
the harmonic oscillator, while the MD run was four time
shorter.

IV. RESULTS AND DISCUSSION

A. Harmonic oscillator

We have carried out several tests that verify the corr
work of the method. The first test concerns the proper w
of the thermostats. In Fig. 1 the distributions of the class
momenta are compared with the analytical distributions:

r~p!5A2p

nb
expF2

nbp2

2 G , ~31!

r~pint!5A2p~n21!

n2b
expF2

n2bpint
2

2~n21!
G , ~32!

r~pc!5A2p

b
expF2

bpc
2

2 G . ~33!

Expressions~31!–~33! are given in intrinsic units. As it can
be seen from Fig. 1~b!, the simulation results are approac
ing the exact ones as the number of beads and Fourier
06671
,
en

r

.
r-
s

o-
s.
s
r
e
d

on
of

ut
d

ly

It
er

n-

ct
k
l

ar-

monics is growing. In Fig. 1~a! we therefore present th
‘‘worst’’ case for the number of beads equal to 2 and on
one Fourier harmonics. One can see that even in this cas
simulation results nearly coincide with the analytical resu
The deviation of the classical energies was also within
accuracy limit~data not shown!. This demonstrates that th
implemented thermostating scheme works properly.

The second test concerns the classical energy distribut
obtained at different temperatures. It can be shown that s
distributions should satisfy the relationship

r~E@b1# !

r~E@b2# !
exp@2~b12b2!E#5Const5

sinh@b1/2#

sinh@b2 /2#
.

~34!

We simulated two temperaturesb152.0 andb252.2 and ob-
tained the classical energy distributions, both for the stand
and for the center-of-mass thermostating schemes. The
sults are presented in Fig. 2. It is clear that results obtai
via the center-of-mass thermostating scheme are much b
than those obtained using the standard Hoover proced

FIG. 1. The comparison of classical momentum distributions
quantum harmonic oscillator with corresponding analytical resu
~a! The pairs of simulation results and analytical curves for to
internal, and mass centrum momenta.~b! The difference between
simulation and analytical total momenta. Momenta are presente
intrinsic units.
0-5
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One can also conclude that the implemented center-of-m
thermostating scheme reproduces correctly the canonica
semble.

The mean kinetic energy was evaluated using the vi
estimator, which in the case of harmonic potential is identi
to the potential energy estimator~see Appendix!. That is why
the total quantum energy was defined simply as twice
potential energy.

Two types of the potential energy estimators were u
for the quantum mean energy~see Appendix!. Using the first,
‘‘continuous’’ estimator, the potential energy is evaluated
an average ofV(x) over the whole trajectory@see Eq.~A2! in
the Appendix#. According to the second, ‘‘pure bead’’ est
mator, the averaging is taken only over bead points dis
garding the trajectory in between~A13! and ~A15!. Some-
what counterintuitively, we discovered that the use of ‘‘pu
bead’’ estimators within the Bead-Fourier MD scheme p
vides a better convergence relative to the number of be
~see Fig. 3, Table I!. There is, however, a reasonable exp
nation for that. If one considers the numerical evaluation
the integral ofx2 using the trapezoidal rule~analog of the
pure bead estimator!, it will always be greater than its exac

FIG. 2. Ratio~34! calculated for quantum harmonic oscillato
n55, kmax50 at two temperaturesb152 and b252.2, for the
standard and the center-of-mass thermostating schemes.

FIG. 3. The mean energy for quantum harmonic oscillator ab
52 for various numbers of beads and Fourier harmonics obta
via ‘‘continuous’’ and ‘‘pure bead’’ estimators. Energies are in i
trinsic units.
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value~the continuous estimator!. Since in the finite-bead ap
proximation of path integrals the potential energy is und
estimated, we have a clear case of cancellation of error
using the pure bead estimator. Situation may be differen
the case of convex potential functions~with negative second
derivative!, but these are not typical cases. Important is a
that both the estimators provide exact values at large num
of beads.

Analysis of data in Table I shows that addition of a fe
Fourier harmonics already improves the precision quite c
siderably. For example, for the number of beadsn53, al-
ready one single Fourier harmonic was enough to give
exact energy value within statistical error, using pure be
energy estimators. The use of Bead-Fourier approach
clearly beneficial in comparison to the pure bead meth
Another advantage of the Bead-Fourier scheme is that
ergodicity problem, especially severe for the harmonic p
tential within the pure bead scheme and related to the w
interaction of harmonic modes, is intrinsically solved by a
tificial ‘‘interactions’’ between beads and Fourier harmoni
~10! and ~12!.

The results for the quantum coordinate distributions
presented in Fig. 4. We obtained two types of the distrib
tions: one was calculated from the bead positions, while
other was evaluated from the whole trajectory, i.e., includ
the parts of the trajectory in between the beads. Since
quantum mean energy can be calculated from the quan
coordinate distribution, the former corresponds topure bead
energy estimators and the latter corresponds to thecontinu-
ous estimators~see Appendix A!. Note that already for the
number of beadsn52 and with only one single Fourier har
monics the bead coordinate distribution nearly coincid

d

TABLE I. Quantum mean energy for harmonic oscillator atb
52 for various numbers of beadsn and Fourier harmonicskmax.
The first row in each cell corresponds to ‘‘continuous’’ estimato
while the second corresponds to ‘‘pure bead’’ estimators. Ener
are presented in intrinsic units.

kmax

Number of beads,n

2 3 4

0 0.530 0.571 0.585
0.607 0.640 0.647

1 0.589 0.613 0.624
0.650 0.655 0.655

2 0.612 0.632 0.637
0.649 0.659 0.657

3 0.623 0.628 0.642
0.650 0.646 0.656

4 0.629 0.638 0.647
0.650 0.652 0.658

5 0.634 0.642 0.647
0.649 0.654 0.656

6 0.631 0.645 0.649
0.643 0.655 0.657

7 0.635 0.646 0.651
0.648 0.655 0.658
0-6
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with the exact one, while the deviations of the coordin
distribution built on the whole trajectory are relatively bi
This latter fact illustrates that the averages calculated o
beads only are better than those calculated over the w
trajectory. We should stress, however, that in both the ca
the dynamics was created by the Bead-Fourier scheme,
forces acting on beads depend on the whole traject
Again, the pure bead dynamics yields worse results; mo
over, it suffers from ergodicity problems.

The data presented above correspond to a weakly de
erated system. Now, let us consider a strongly degener
case withb515.8. Such system can be compared with O
bond vibrations at room temperature. The results for
quantum mean energy for a different number of beads
Fourier components are presented in Fig. 5. For instance
the number of beadsn55 any number of Fourier harmonic
kmax>2 gives results inside the statistical error. Within t
pure bead algorithm, it would be necessary to take sev
hundred beads to reach the same precision. In Ref.@14#, n
5400 was used to simulate a harmonic oscillator at this te
perature and thestagingalgorithm was applied to sample th
big number of bead degrees of freedom in this system.
accuracy achieved in Ref.@14# either by staging MD or MC
was about the same~0.3%! as in our work.

FIG. 4. The quantum coordinate distribution for harmonic os
lator at b52. ~a! Comparison between the results obtained
‘‘continuous’’ and ‘‘pure bead’’ estimators and the analytical on
for n52, kmax51. ~b! The differences between two quantum coo
dinate distributions forn52, kmax51; n54, kmax57 and the ana-
lytically exact distribution. Distances are given in intrinsic units
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Note also that although the number of beads and Fou
harmonics have to be increased asb is growing, the in-
creased CPU time is somewhat compensated by the pos
ity to increase the size of the MD time step, since the st
ness of the springs is proportional ton/b2.

B. Hydrogen atom

Following the line of the preceding section we start fro
the classical momenta distributions~Fig. 6!. Classical mo-
menta should be always~for any potential energy! distributed
according to the Maxwell distribution and this comparis
serves as a test that the MD algorithm reproduces a cano
ensemble. Deviations from the exact result are shown in
6~b!. One can see that these deviations are one order of m
nitude smaller than in the case case of harmonic poten
@Fig. 1~b!#!. The reason is that the simulations of the Co
lomb potential with hydrogen atom parameters require m
beads than the harmonic oscillator, while the deviations
momenta from Maxwell distribution decrease with the i
creasing number of beads.

The results for the quantum mean energy for the hydro
atom are presented in Fig. 7 and Table II. Note that as it w
in the case of the quantum harmonic oscillator, the aver
energies obtained by pure bead estimators converge fa
than those obtained by using Bead-Fourier estimators,
though the difference is smaller here. One can also see a
clear improvement of the results after addition of the Four
harmonics. The same effect exists for quantum coordin
distributions, shown in Fig. 8. In the case of the Coulomb
potential the improvement of the distribution due to incl
sion of the Fourier harmonics is even more pronounced t
in the case of harmonic oscillator.

These results demonstrate that without Fourier harmo
the method is unable to yield reasonable results even
extended numbers of beads,n. At small n, the beads get
easily stacked near the nucleus due to the strong attrac
Without a finite cutoff of potential~20!, the beads simply
collapse on the nucleus. As a result, at zero Fourier com
nents and a few dozens of beads, the potential energ
several times lower than the exact value. Addition of a f

-

FIG. 5. Quantum harmonic oscillator atb515.8. The depen-
dences of the quantum mean energy~in intrinsic units! over beads
numbers for various numbers of Fourier harmonics. Compari
with the exact result.
0-7
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IVANOV, LYUBARTSEV, AND LAAKSONEN PHYSICAL REVIEW E 67, 066710 ~2003!
~5–6! Fourier components allows to reach 1% precision w
no more than 30 beads.

Table III contains information about the average distan
between the beads for different numbers of beads and F
rier harmonics. It is known that when the finite-bead a
proximation is sufficient, this distance should scale asn21/2.
One can see that this dependence more or less holds w

FIG. 6. The comparison of classical momenta distributions
hydrogen atom with the analytical results.~a! The pairs of simula-
tion results and analytical curves for total, internal, and mass c
trum momenta.~b! The difference between simulation and analy
cal total momenta.

FIG. 7. The dependences of the quantum mean energy~eV! for
hydrogen atom on the beads number for numbers of Fourier
monics 3 and 6 obtained using ‘‘continuous’’ and ‘‘pure bead’’ e
timators.
06671
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the number of Fourier components is 5 or 6. For a sma
number of Fourier components~and especially forkmax50)
the opposite trend occurs with the average distance b
smaller for smallern. This results from strong attraction
pulling the trajectory closer to the nucleus in the Coulom
potential well. Addition of Fourier components, even
small n, leads to an increase of the average distance up
limiting value, corresponding to the case when the traject
correctly describes the electron density around the hydro
atom.

V. CONCLUSION

Bead-Fourier path-integral formulation of molecular d
namics method is presented. In this first paper we have te
the BF-PIMD method for both quantum harmonic oscillat
and hydrogen atom and demonstrated that it accurately

r

n-

r-
-

TABLE II. Quantum mean energy~eV! for hydrogen atom pre-
sented for various numbers of beadsn and Fourier harmonicskmax.
The first row in each cell corresponds to ‘‘continuous’’ estimato
while the second corresponds to ‘‘pure bead’’ estimators.

kmax

Number of beads,n

10 20 30 40 50 60

0 2189.8 2161.4 2116.7 259.1 235.3 227.2
2171.6 2132.9 291.4 247.5 229.7 223.7

1 2161.6 254.2 225.5 219.8 217.8 216.8
2125.0 239.4 221.3 217.7 216.4 215.7

2 2114.2 224.0 218.2 216.4 215.6 215.1
276.2 220.0 216.5 215.4 214.9 214.6

3 247.8 218.9 216.2 215.2 214.7 214.5
232.5 217.0 215.3 214.7 214.3 214.2

4 228.4 217.2 215.5 214.7 214.4 214.2
222.3 215.9 214.8 214.2 214.1 214.0

5 222.9 216.2 215.0 214.5 214.1 214.1
219.5 215.4 214.6 214.1 213.9 213.9

6 220.5 215.6 214.6 214.3 214.0 213.8
218.4 215.0 214.3 214.1 213.9 213.7

FIG. 8. The quantum coordinate distributions for hydrogen at
with n530 and various numbers of Fourier harmonics. Compari
with the analytical result. Distances are given in Å.
0-8
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produces the properties for which there exist analytical so
tions. For the pure bead method the center-of-mass ther
stating scheme already reduces the ergodicity probl
yielding much more stable results compared to the stand
thermostating scheme. Finally, introduction of Fourier h
monics eliminates the ergodicity problem completely. T
averages obtained, using the Bead-Fourier molecular dyn
ics with pure bead estimators, converge to the exact re
faster than those calculated along the trajectories.

Comparison of the simulation results with the exact d
obtained analytically shows that after introducing only fe
~often even one single! Fourier harmonics considerably im
proves the results even for a small number of beads.
combined Bead-Fourier method shows a clear improvem
compared to the pure bead or pure Fourier schemes. U
the BF-PIMD algorithm, the computing time per time step
roughly proportional to the product of the number of bea
and the maximum number of Fourier terms. The optim
ratio between the numbers of beads and Fourier harmo
depends from on the system studied. Although we have
done any precise benchmarking, our simulation times sh
that, e.g., for hydrogen the best results are obtained when
number of beads is several times~5–10! larger than the cor-
responding number of Fourier harmonics.
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APPENDIX: ENERGY ESTIMATORS

The estimators of the mean kinetic and potential energ
can be obtained from the Gibbs-Helmholtz equation:

^H&5
]

]b
~bF !52

] ln Z

]b
52 K 1

C~b!

]C~b!

]b L
1 K ]~bUkin!

]b L 1 K ]~bUpot!

]b L [^Ekin&1^Epot&,

~A1!

where the potential energy@34# is

TABLE III. Average distances (Å) between the beads for h
drogen atom for various numbers of beadsn and Fourier harmonics
kmax.

kmax

Number of beads,n

10 20 30 40 50 60

0 0.0270 0.0414 0.0750 0.1462 0.1714 0.171
1 0.0373 0.1736 0.2196 0.2113 0.1976 0.185
2 0.0919 0.2513 0.2376 0.2178 0.2008 0.187
3 0.2154 0.2668 0.2425 0.2198 0.2021 0.187
4 0.2735 0.2729 0.2445 0.2213 0.2027 0.188
5 0.2941 0.2760 0.2453 0.2214 0.2031 0.188
6 0.3044 0.2784 0.2465 0.2221 0.2032 0.188
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^Epot&5(
j 51

n K 1

nE0

1

djV@xj~j!#L ~A2!

and the kinetic energy is

^Ekin
prim&5

n

2b
~11kmax! 2K (

j 51

n
Mn

2b2\2 F ~xj 112xj !
2

1 (
k51

kmax ~kp!2

2
ajk

2 G L . ~A3!

The latter result is calledprimitive estimator@3#. Note that
it does not depend on the potential. It is known that t
uncertainty of the primitive estimator is large and grows w
the number of beads@32#. Another estimator without this
disadvantage calledvirial estimator has been suggested@32#:

^Ekin
v ir &5

1

2n K L̂(
j 51

n E
0

1

djV@xj~j!#L , ~A4!

where

L̂[(
j 51

n Fxj

]

]xj
1 (

k51

kmax

ajk

]

]ajk
G . ~A5!

We have mainly used the latter for the kinetic energy.
For the quantum harmonic oscillator the expressions

energy estimators are

^Ekin
v ir &5K (

j 51

n H 1

12n
@4xj

21xjxj 111xjxj 21#

1
1

2n (
k51

kmax Fxj@aj ,k2~21!kaj 21,k#

kp
1

ajk
2

2

1
aj ,k@xj2~21!kxj 11#

kp G J L , ~A6!

^Epot&5(
j 51

n
1

n F1

6
~xj 11

2 1xj 11xj1xj
2!

1 (
k51

kmax @xj2~21!kxj 11#ajk

kp
1 (

k51

kmax ajk
2

4 G . ~A7!

Note that according to the virial theorem, Eqs.~A6! and~A7!
must be equal. In fact, they are, that can be proved using
properties of cycling summations.

In the case of the hydrogen atom the expressions for
energy estimators are as follows. The kinetic part rema
unchanged, and we write down the primitive estimator in
appropriate units:
0-9
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^Ekin
prim&5

dn

2
kBT~11kmax!

2K (
i 51

d H (
j 51

n

C1~T!F ~xi , j 112xi , j !
2

1 (
k51

kmax ~kp!2

2
ai jk

2 G J L , ~A8!

d being the dimensionality. The potential energy estimato

^Epot&5
C2

n K (
j 51

n E
0

1

djṼe f f@r j~j!#L . ~A9!

Then obtaining the virial estimator is straightforward:

^Ekin
v ir &5

C2

2n K L̂(
j 51

n E
0

1

djṼe f f@r j~j!#L , ~A10!

where

L̂[(
i 51

3

(
j 51

n Fxi j

]

]xi j
1 (

k51

kmax

ai jk

]

]ai jk
G , ~A11!

^Ekin
v ir &5

C2

n K (
i 51

3

(
j 51

n E
0

1

djF xi j H ~12j!xi j ~j!

r j
3~j!

1
jxi j 21~j!

r j 21
3 ~j!

J 1 (
k51

kmax ai jk sin~kpj!xi j ~j!

r j
3~j!

G L .

~A12!
h

m

r-

v,

v,

b.
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Expressions above correspond to ‘‘continuous’’ estimators
which the averaging is made along the trajectory. As
discussed in the text, another possibility is to calculate
averages from the beads positions only removing the part
the trajectory in between. The expressions for the mean
ergies in this case are

^Ekin
v ir &5^Epot&5(

j 51

n xj
2

2n
, ~A13!

for harmonic oscillator, and

^Ekin
v ir &5

C2

2 (
i 51

3

(
j 51

n F xi j
2

r j
3~0!

G , ~A14!

for hydrogen atom. The potential estimator can be obtai
directly:

^Epot&55 2C2(
i 51

3

(
j 51

n xi j
2

r j
3~0!

, r j~j!>r 0

C2

2r 0
•(

j 51

n F r j
2~0!

r 0
2

23G , r j~j!<r 0 .

~A15!
J.
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