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Bead-Fourier path integral molecular dynamics
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Molecular dynamics formulation of Bead-Fourier path integral method for simulation of quantum systems at
finite temperatures is presented. Within this scheme, both the bead coordinates and Fourier coefficients, defin-
ing the path representing the quantum particle, are treated as generalized coordinates with corresponding
generalized momenta and masses. Introduction of the Fourier harmonics together with the center-of-mass
thermostating scheme is shown to remove the ergodicity problem, known to pose serious difficulties in stan-
dard path integral molecular dynamics simulations. The method is tested for quantum harmonic oscillator and
hydrogen aton{Coulombic potential The simulation results are compared with the exact analytical solutions
available for both these systems. Convergence of the results with respect to the number of beads and Fourier
harmonics is analyzed. It was shown that addition of a few Fourier harmonics already improves the simulation
results substantially, even for a relatively small number of beads. The proposed Bead-Fourier path integral
molecular dynamics is a reliable and efficient alternative to simulations of quantum systems.
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[. INTRODUCTION tained in path integral Monte Cari®IMC) simulations.
Typically, the Metropolis Monte Carlo algorithm is used

Path integralPl) simulation techniques, based on Feyn-to sample the trajectories in PIMC simulations. An alterna-
man path integral formalisifiL] provide a powerful tool to tive way to generate an ensemble of trajectories with a ca-
study quantum many-body systems. The quantum partitiononical probability distribution is to use molecular dynamics
function can be presented as an imaginary-time path integraMD) algorithms with a suitable thermosf{dt2—15. One of
[1,2], formally equivalent to the configurational integral over the reasons of interest to molecular dynamics algorithms is a
closed trajectories, or paths. The Pl formalism is exact an¢hope to improve sampling over the configurational space in
straightforward to use for systems of interacting quanturnrcertain cases: for very light particles, where description re-
particles but it requires, in principle, an infinite number of quires high numbers of beads, for systems of many identical
parameters to define the trajectory. Therefore, finite-numbeparticles, etc. For instance, in Rdfl5], the path integral
approximations have to be used to treat the path integrals imolecular dynamic§PIMD) algorithm was applied to de-

numerical computer simulations. scribe a solvated electron, a system where several hundred of
Historically, two main branches of approximative meth- beads were required.
ods have appeared. In the first, so-called discretizeBead Another reason for the interest to the PIMD method is

approximation[3] scheme the trajectory is represented as ahat, being formulated asentroid dynamics, it can describe
“ring polymer,” consisting of a finite number of beads con- real-time dynamics in a semiclassical approximation. The
nected together with harmonic springs. Second,Rberier  corresponding formalism has been developed by Cao and
approximatior4] method describes the trajectory by a finite Voth in a series of work§16—18. In their formulation the
set of Fourier series terms. Further, there exist different varimotion of the path centroidi.e., center of mass of the tra-
ants within the two categorigsee, for example, Ref5] for  jectory) in an effective(mean forcg potential is generated by
Fourier-based approacheoalson[6] has shown that, in all the beads of the path. Centroid dynamics has been shown
the high-order implementation, i.e., when the number of paio be exact for a harmonic potential and gives a correct clas-
rameters representing the trajectory is large, the bead argical limit. It has been used in a number of applicatipt®—
Fourier approaches are essentially the same. Studies of t22] and also included as an option in the CPMDar-
relative efficiencies of the different versions of both theParrinello molecular dynamigs[23] package, now a
methods[5-8] show that the efficiency can vary substan- standard tool imab-initio MD simulations.
tially depending on the particular system and the specific The purpose of this work is to present a molecular dynam-
algorithm. ics approach for simulations of quantum systems based on
Recently, a combined Bead-FouriéBF) Monte Carlo Bead-Fourier representation of path integrals. We hope that
(MC) method was suggested by Vorontsov-Velyaminov, Nesour BF-PIMD approach would help resolve the difficulties
vit, and Gorbunoy{9] in which the parts of the trajectory experienced in using the standard bead algorithm in cases
between the beads are presented as a Fourier series. It waken the number of required beads rapidly increases, caus-
shown in this paper and in the subsequent wtks11 that  ing the springs, connecting the beads, to become stiffer.
by combining the bead and Fourier contributions in an opti-Within the MC method this leads to ergodicity problems
mal way, a substantial performance improvement can be olzaused by the resulting very low probability of moving the
trajectory, while in using the MD approach very short time
steps are required making the simulations more computa-
*Electronic address: serge@physc.su.se tional time demanding. It was shown in RE8] within the
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MC framework that after introducing just a few Fourier har- n Kmax (k)2
monics the number of required beads was quite substantially H{x;,a;}= 2 P (xi+1—xj)2+ ajzk
reduced. i=112p%h 12
A promising method to describe systems consisting of
many identical particles was suggested by Miura and Oka- + }fldgv[x_(@]l @)
zaki [24]. They implemented a PIMD algorithm for systems nJo )
of either fermionic or bosonic identical particles by introduc-
ing a pseudopotential between the beads taking into accouandC(B) is a normalization constant,
the permutational symmetrgA similar type of pseudopoten-
tial approach was also considered in Rgf5].) However, Mn | (V2 Kma Kmax
these approaches again face problems at high number of C(B)= 2852 V2 (4)
beads. We, therefore, believe that the Bead-Fourier scheme is B
a realistic option to consider. _|n Egs.(3) and(4), M is the particle mass) is the number of
In this work, we use MD as a tool to generate a canonlcaLeadSﬂ is the inverse temperatur@e 1kT), andV is the

ensemble of trajectories, not touching the question of a dyb
namical interpretation within the centroid dynamics. In this

first preliminary study we apply our BF-PIMD method on
two familiar quantum systems for which analytical exact so

lutions are avallable: harr‘_nonlc; potentidiarmonic OSC'"a'_ tance equal to zejowhile the interaction is distributed along
tor) and Coulombic potential with p?‘raF‘"EtefS correspondlnqhe trajectory presented witk,, FoOurier series terms in
to those for a hydrogen atom. Application of our method ONpatween the beads X

systems with several identical particles will appear in subse-
guent publications.

The paper is organized as follows. The methodology, in-
cluding a general formalism and its application on the chosen
specific cases, are described in Sec. Il. Simulation details are In the original formulation of the BF schen@], the sys-
given in Sec. lll. Results and discussion are presented in Setem described by Hamiltonia3) was sampled over the con-
IV followed by conclusions in Sec. V. Some technical infor- figurational spacéx; ;a;.} using the MC method. In order to

otential energy of the system studied.

The classical object, isomorphic to the quantum particle is
then a trajectory in the imaginary time, consisting of beads
“connected by harmonic sprindwith the equilibrium dis-

B. Canonical ensemble molecular dynamics by means
of central mass NoseHoover thermostating scheme

mation is given in Appendix A. develop a path integral MD scheme, we treat Hamiltonian
(3) as a potential energy and introduce the corresponding
Il. THEORY kinetic terms:
A. The Bead-Fourier approach n 2 Kmax 2
o : . : HoHe S | P s P (5)
The basic idea behind the BF approach is to unite the =1l2m & 2m

Bead and Fourier approximations into a single scheme. We

consider here quantum part!CIe Wlth a méssonfined in an Now we treat the bead Coordinatb%} and Fourier amp"_
ext(_ernal potentiaV(x) . In thl_s section, aII_the formulas are tudes{a;} as generalized coordinates afy ;p;.} as the
derived for the one-dimensional case, since the generalizgeneralized momenta, conjugated to the bead coordinates
tion for the d-dimensional case is trivial. Accordlng to the and Fourier amp]itudes, Corresponding|y_ Then the Hamil-
work of Vorontsov-Velyaminov, Nesvit, and Gorbun®],  tonian dynamics is applied in the phase space
the trajectory describing the particle can be presented as f&; P ;. Pjx} with the bead masm and the “masses” of
number of beads, connected by continuous paths expressgdg Fourier harmonicey,. We usem=M/n in order to keep

as Fourier sine series: the mass of the whole object equal to the particle mass,
Kimn though it is not necessary.
_ . As our purpose is to generate a set of configurations for
Xi(&)=X;i+ (Xiy1—X;)E+ a; sin(kwé), 1 . .
i(E=XF (X 17%)¢ kz’l i sin(kré) @ the system representing a canonical ensemble, we add the

NoseHoover thermostat chains to the Hamiltonian equations
Wherekmax is the maximum number of Fourier series terms, of motion, which can be done in a standard mar[rﬁﬁi]_
j andk are the indexes for the beads and Fourier harmonicsdowever, the results for the quantum harmonic oscillator
correspondinglyx; are the bead coordinates aag the Fou-  were far from satisfactory. The classical Hamiltoni@ in
rier amplitudes. Herex;(&) describes the part of the trajec- this case contains only harmonic terms and can be repre-
tory between the beadsandj+1 in the imaginary timer  sented as a sum of independent harmonic oscillatofsor-
=j+&,0<é<1. Then, the partition functiod of the system  mal modes For the dynamics of a classical harmonic oscil-
can be written in the form9] lator, there exists well-known ergodicity problefi27],
N making the standard single thermostat Nékm®ver proce-

. dure inapplicablé26]. Our further analysis showed that, e.g.,
Z=C(p) J-Hl (dxikll dajk)ex;[—BH(xj Al 2 results for the quantum mean energy were unstable depend-
ing on the initial conditions and the deviations of the average
where the effective HamiltoniaH is classical kinetic energy of the trajectory were up to 20%. The

kmax
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system lacks ergodicity due to a very slow redistribution of The expressions for the energy estimators are given in
the energy between global and internal movements. To coAppendix A.
rect this we therefore suggest independent thermostating of
the mass center of the trajectory. C. Quantum harmonic oscillator
In the center-of-mass thermostating scheme the total mo- Here we consider the one-dimensional case since the
mentum of the trajectory is thermostated as a separate degréalimensional isotropic oscillator with a separate thermostat
of freedom, while the momenta of the beads are considerechain for each dimension is mathematically equivalend to
in the system of the mass center and thermostateu-as  one-dimensional oscillators. The potential energy is
degrees of freedom. Thus, we apply two thermostat chains b 2
instead of one. The definitions of the internal and central _ Mo Xj(f)
mass momenta, res i VIx(&)1= ' (14
, respectively, are 2

n _ p° Note that in the case of harmonic oscillatd¥) the integral
pCEE JE p'ij pj— e (6) over{ in Eq. (3) can be evaluated analytically, which is used

=1 in the formulas below.
For a harmonic oscillator it is useful to introduce intrinsic

Following requirements should be satisfied: units in terms of inverse temperatu frequencyw, and

(p©)2 mass of the particlél. Thus,Xx=x/a,, ap=+%w/Mw?, H
mn =keT, (1) =H/hw, T=tw. Inintrinsic units, quantum oscillator can be
characterized by a single parametet 87 w.
(pi_nt)z Hamiltonian(3) in intrinsic units transforms to
2< ’ >=<n—1)kBT, ®) K )
=1 max (k’7T) )

n
~ n
_ > . 2 .
H_,Zl —sz((xjﬂ X;) +k21—2 ajic

where T is the temperaturekg is the Boltzmann constant,
and(---) means the average over the MD simulation. 10 1 %28

The Hamiltonian equations of motion together with ther- +=> J de- ] (15)
mostating of the bead coordinates are nji=1Jo ?

After an analytical integration over the potential energy

ap° & ap; 1 " oH $ ¢
i=2 ﬁ_pcﬂz_g - pcﬂ, (99 term in Eg.(3) the equations of motion with the Nose
gt =1 at Q1 =1 9x Q1 Hoover thermostat chains becors]
int int c n Kmax L Ky, c
AN o3 Y S O]tk
g gt nat TloQ at j=1n k=1 km Q1
; . (16
MH 1S oH 7y :
i Mo 0wt o 1)1
J =1 ] 1 at :_E(ZX]-_X]-*]-_XJ-*:L)_E 6(4XJ‘+XJ—+1+XJ*1)
aX; JH p
I_ _ k k+1
= 1y 2 et (— )"ty
Jat Idp; m + ] 175
Pi k§=:1 km

and for the Fourier amplitudes,

1 n kmax[ajk—'_(_l)kJrlajflk]
LA (12) =P (Xj+k21 ke
at daj QT i
int /1
M 1
fay_ M _ Pk a3 (N 7

P M Note that the sum of the internal forces in Ej7) should be

. are Nosethermosat momenta for the corresponding de-Z€r0; which can be easily proved using the properties of cy-

grees of freedom, which are determined the same way,as clic summation. . . . . .
in Ref. [26]. In the Results and Discussion section, our simulation re-

Here, we have implemented a separate thermostat cha%lésn\?’e";se ngﬂﬁreeorl];vr'th t)r}eaeri(:r%gr?iilxglsﬁllaet)(;?riisiilt?i?ls-.
for each set of Fourier harmonics with the same inétex ic units is[qzs] 9y
Although not quite necessary the masses for all thermostat

chains are chosen to be equal, as they work on objects with ~d b

same masses. Note that E¢s1) and (13) for the bead ve- (H)= > COt"{E (18)
locities and Fourier amplitudes are unifofthey do not de-

pend on the Hamiltonign and its quantum coordinate distribution is given by
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merically in all formulas here, as well as further on. Before
p(x)=(1—exd —b])exd —x2] >, |Hn(x)|2exd —bn], presenting the equations of motion with derivatives over the
n=1 19 generalized coordinates we observe that

aV(E)  IV(E) axij(§)
axig  oxij(€) X

whereH(x) are the Hermite polynomial28].

(25

D. Hydrogen atom Following the scheme from the preceding section we write

Another realistic and analytically solvable quantum sys-down the Hamiltonian equations of moti¢starting from the
tem is the hydrogen atom, presented as an electron in thaaser(&)=ry):
Coulombic potential of a nucleugroton. In order to avoid

an infinite negative potential energy at zero distance, we ap? Xij g) 771|
change the Coulombic potential to a parabolic one at dis- ot 2121 0 fr (f) pi Q (26)
tances less than some cutoff radiys The parameters of the
potential inside the cutoff are fixed by the condition that the int
potential and its first derivative are continud®g: alt] = — Cy(T)[2X}; = Xij -1~ Xij +1]
e?
Tamegrp NP0 o [lae-2u® £)%;(£) [k gé i-1(8)
VINEI=) @ (g 3 (20 (&) (@)
- =, r‘ Sr s .
4meglo\ 2r5 2 (&=ro Cow (1, %(&) 7
n < .
where =1 Jo ri(e) !
The expression for the momenta conjugated with the Fourier
F(6)= /;1 Xi2j(§)- (21) amplitudes is
Ipij 1 sin(kmé)x;;(€)
Index i in Egs. (20) and (21) runs over the three spatial &—'tjk= —Cl(T)(kw)zaijk—sz dgs—"
coordinates. Other examples of smoothing potentials are pre- 0 rj(é)
sented, e.g., in Ref§29,30. The latter work is dedicated to i
the detailed analysis of the choice of the smoothing potential L (28

. ijk
and its parameter. Q1
In order to simplify the formulas we introduce the follow-

ing notations: The thermostat chains are created for each dimension sepa-

rately. Thus, there arekf,,,+2)d thermostat chains in total.

2 2 If we consider the case<r all the expressions for the
nMkg s . !
Cy(T)= T2, C,= (22 momenta and kinetic energy estimator will be the same after
272 4meon the substitutionr;(£)—r,. The latter can be easily proved
. . by using Eq.(25). The potential energy estimator should be
The potential energy now transforms into considered separately, since it does not contain derivatives
(see Appendix A
r(E)=r In this work we only consider the electronic ground state
5 ¢’ 0 of hydrogen atom. The analytical results for the energy and
V[ri(é§)]= 1[r28) 3 (23)  radial distribution function ar€28]
j
—| —=—=|, riéd)=ry,
I’O( ZFS 2) J(g) ° Eground:_hCRH (29
while Hamiltonian(3), generalized to the three dimensions, 1
is p(r)=——e 2", (30
7Rz
3 n Kmax (k )2
H=> (> |C (T)( (Xij+1—Xi)) 2+ Z ”k) whereR,, is the Rydberg constarRg being the Bohr radius.
=1 |ji=1
1 } IIl. COMPUTATIONAL DETAILS
+C déV[r; 24 . . . .
2f0 eVIn (8] 29 The time reversible molecular dynamics algoritti8i]

with the NoseHoover chains of three thermostats was imple-
Since the integral in the potential part of Hamiltoni@d) mented in all calculations. In fact, the effect of increasing the
cannot be evaluated analytically, it has to be calculated nuthermostat chains length from 2 to 3 is negligible. The same
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chain length was found satisfactory in Rgf4] for the stag-
ing algorithm.

In practical simulations of quantum harmonic oscillator,
the simulation parameters are used in intrinsic units, choset
as time stepdt=2x103, thermostat masse€,=Q;
=0.01,Q,=nQ,, n being the number of beadi26]. Masses
of the Fourier amplitudes were chosenmag=0.5% 1. This
corresponds to an approximately equal fluctuation time for
all Fourier amplitudes. Typical calculation consisted of 40
series 2 10° steps each. The statistical uncertainty of the
guantum mean energy was within 0.5%.

For the hydrogen atom, the following units were used. &&=
Distances were measured in A, time in femtoseconds, ener? 18
gies were converted to eV. Typical values for the simulations®
were time stept=2x10"3fs, cutoff radiusr,=0.1 A. The
thermostat masses were chosen to correspond to the therm
stat fluctuation time of 1000 molecular dynamics time steps.

Numerical integration in the potential energy terms was
carried out according to the trapezoidal rule with the number
of integration steps around 10. The concrete number of theg
integration steps for the particular numbers of beads ancg
Fourier harmonics could be chosen according to the data o

probability

PHYSICAL REVIEW E67, 066710 (2003

< Total momenta

— Total momenta(exact)
o Central mass momenta

— Central mass momenta(exact)
x Internal momenta

— Internal momenta(exact)

menta

-0.5 0 05 1 15 2

——n=2, Kmax=1

—n=4, Kmax=7

the average distance between the beads and the curvature
the potential at this point.

For hydrogen atom, the simulations have been carried ou
at T=10* K. Since the energy gap between the ground and

the first excited state of the hydrogen is about 10(above

10° K), the simulation temperature corresponds essentially

to the ground statg9].
Typical calculation consisted of 40 series<30° steps

=

probability

-0.004 -
(b) momenta

FIG. 1. The comparison of classical momentum distributions for

each. The accuracy of the quantum energy was within 1%. l§uantum harmonic oscillator with corresponding analytical results.
seems interesting that the accuracy remains constant eithgjj The pairs of simulation results and analytical curves for total,

for harmonic oscillator or for hydrogen atom independentlyinternal, and mass centrum momenga). The difference between

of the beads and Fourier harmonics numbers. Note that usimulation and analytical total momenta. Momenta are presented in

certainty for Coulombic potential was twice higher than for
the harmonic oscillator, while the MD run was four times
shorter.

IV. RESULTS AND DISCUSSION

A. Harmonic oscillator

intrinsic units.

monics is growing. In Fig. (8 we therefore present the
“worst” case for the number of beads equal to 2 and only
one Fourier harmonics. One can see that even in this case the
simulation results nearly coincide with the analytical results.
The deviation of the classical energies was also within the

We have carried out several tests that verify the correchccuracy limit(data not shown This demonstrates that the

of the thermostats. In Fig. 1 the distributions of the classical

momenta are compared with the analytical distributions:

2 nbp?

P(P)=\1p &R~
_[2m(n-1) n?bpfy;

P(Pint) = T exp{ - m} (32

(33

: (31

Expressiong31)—(33) are given in intrinsic units. As it can
be seen from Fig. (b), the simulation results are approach-

The second test concerns the classical energy distributions
obtained at different temperatures. It can be shown that such
distributions should satisfy the relationship

sini b,/2]

sinffb,/2]"
(34)

p(E[b,])

mexq —(b;—b,)E]=Const=

We simulated two temperaturbg= 2.0 andb,=2.2 and ob-
tained the classical energy distributions, both for the standard
and for the center-of-mass thermostating schemes. The re-
sults are presented in Fig. 2. It is clear that results obtained
via the center-of-mass thermostating scheme are much better

ing the exact ones as the number of beads and Fourier hathan those obtained using the standard Hoover procedure.

06671
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12 TABLE |I. Quantum mean energy for harmonic oscillatorbat
M =2 for various numbers of beadsand Fourier harmonick,ay-
1.15 . . . .
The first row in each cell corresponds to “continuous” estimators,

while the second corresponds to “pure bead” estimators. Energies
are presented in intrinsic units.

Number of beads)

Kimax 2 3 4
0.95 ——c/m thermostating scheme
— Exact 0 0.530 0.571 0.585
09 —— Standard thermostating scheme. 0.607 0.640 0.647
- 1 0.589 0.613 0.624
0.650 0.655 0.655
Energy

08 " 2 0.612 0.632 0.637

1] 0.3 06 0.9 12 1.5
0.649 0.659 0.657
FIG. 2. Ratio(34) calculated for quantum harmonic oscillator 3 0.623 0.628 0.642
n=5, Kn»=0 at two temperatureb,;=2 andb,=2.2, for the 0.650 0.646 0.656
standard and the center-of-mass thermostating schemes. 4 0.629 0.638 0.647
0.650 0.652 0.658
One can also conclude that the implemented center-of-mass g 0.634 0.642 0.647
thermostating scheme reproduces correctly the canonical en- 0.649 0.654 0.656
semble. o _ B 6 0.631 0.645 0.649
The mean kinetic energy was evaluated using the virial 0.643 0.655 0.657
estimator, which in the case of harmonic potential is identical 7 0.635 0.646 0.651
to the potential energy estimatree Appendix That is why 0.648 0.655 0.658

the total quantum energy was defined simply as twice the
potential energy.

Two types of the potential energy estimators were usegalue(the continuous estimatorSince in the finite-bead ap-
for the quantum mean energsee Appendix Using the first,  proximation of path integrals the potential energy is under-
“continuous” estimator, the potential energy is evaluated asestimated, we have a clear case of cancellation of errors in
an average o¥/(x) over the whole trajectorjsee Eq(A2) in  ysing the pure bead estimator. Situation may be different in
the Appendiy. According to the second, “pure bead” esti- the case of convex potential functiofsith negative second
mator, the averaging is taken only over bead points disrederivative, but these are not typical cases. Important is also

garding the trajectory in betwee13) and (A15). Some-  that both the estimators provide exact values at large number
what counterintuitively, we discovered that the use of “puregf peads.

bead” estimators within the Bead-Fourier MD scheme pro-  Analysis of data in Table | shows that addition of a few
vides a better convergence relative to the number of beaC*Sourier harmonics a|ready improves the precision quite con-
(see Fig. 3, Table)l There is, however, a reasonable eXIO|a'siderany. For example, for the number of beads3, al-
nation for that. If one considers the numerical evaluation Ofready one Sing|e Fourier harmonic was enough to give the
the integral ofx? using the trapezoidal ruléanalog of the exact energy value within statistical error, using pure bead
pure bead estimatprit will always be greater than its exact energy estimators. The use of Bead-Fourier approach is
clearly beneficial in comparison to the pure bead method.
066 1 —t Another advantage of the Bead-Fourier scheme is that the
ergodicity problem, especially severe for the harmonic po-
tential within the pure bead scheme and related to the weak
interaction of harmonic modes, is intrinsically solved by ar-
tificial “interactions” between beads and Fourier harmonics

2 08
neaen (10) and(12). | o
g ose :::;ES)F) The reSL_JIts _for the quantum coordinate dlstrlbut|0_ns_are
056 - n-3(B) presented in Fig. 4. We obtained two types of the distribu-
A tions: one was calculated from the bead positions, while the
0.54 other was evaluated from the whole trajectory, i.e., including
05 . . ‘ . . . . the parts of the trajectory in between the beads. Since the
0 1 2 S, 5 6 7 guantum mean energy can be calculated from the quantum
e coordinate distribution, the former correspondgtoe bead

FIG. 3. The mean energy for quantum harmonic oscillatds at €nergy estimators and the latter corresponds toctmeinu-
=2 for various numbers of beads and Fourier harmonics obtaine@Us estimators(see Appendix A Note that already for the
via “continuous” and “pure bead” estimators. Energies are in in- number of beada=2 and with only one single Fourier har-
trinsic units. monics the bead coordinate distribution nearly coincides
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0.6 q 0.51

//

o + Bead-Fourier
; s Pure Bead

— Exact

0.3

Quantum energy

probability

0.2 4

0.1 4

2 3 4 5 6

v T T T T © T T T T Beads number

25 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25

@ coordinate FIG. 5. Quantum harmonic oscillator at=15.8. The depen-
0.007 dences of the quantum mean enefigyintrinsic unit9 over beads

numbers for various numbers of Fourier harmonics. Comparison
with the exact result.

——n=2, Kmax=1

= n=4, Kmax=7 Note also that although the number of beads and Fourier
harmonics have to be increased lads growing, the in-
creased CPU time is somewhat compensated by the possibil-
ity to increase the size of the MD time step, since the stiff-
ness of the springs is proportional néb?.

probabllity difference

B. Hydrogen atom
© -0.005
o) coordinate Following the line of the preceding section we start from

the classical momenta distributioriBig. 6). Classical mo-
FIG. 4. The quantum coordinate distribution for harmonic oscil- menta should be alway$or any potential energydistributed

lator atb=2. (a) Comparison between the results obtained viagccording to the Maxwell distribution and this comparison
“continuous” and “pure bead” estimators and the analytical onesseryes as a test that the MD algorithm reproduces a canonical
for n=2, kne,=1. (b) The differences between two quantum coor- ensemble. Deviations from the exact result are shown in Fig.
dinate distributions fon=2, Kys,=1; =4, kns,=7 and the ana- - g(y) One can see that these deviations are one order of mag-
lytically exact distribution. Distances are given in intrinsic units. it/ \de smaller than in the case case of harmonic potential

[Fig. 1(b)]). The reason is that the simulations of the Cou-
with the exact one, while the deviations of the coordinatelomb potential with hydrogen atom parameters require more
distribution built on the whole trajectory are relatively big. beads than the harmonic oscillator, while the deviations of
This latter fact illustrates that the averages calculated ovemomenta from Maxwell distribution decrease with the in-
beads only are better than those calculated over the wholgreasing number of beads.
trajectory. We should stress, however, that in both the cases The results for the quantum mean energy for the hydrogen
the dynamics was created by the Bead-Fourier scheme, i.eatom are presented in Fig. 7 and Table II. Note that as it was
forces acting on beads depend on the whole trajectoryin the case of the quantum harmonic oscillator, the average
Again, the pure bead dynamics yields worse results; moreenergies obtained by pure bead estimators converge faster
over, it suffers from ergodicity problems. than those obtained by using Bead-Fourier estimators, al-

The data presented above correspond to a weakly degetiough the difference is smaller here. One can also see a very

erated system. Now, let us consider a strongly degeneratadear improvement of the results after addition of the Fourier
case withb=15.8. Such system can be compared with OH-harmonics. The same effect exists for quantum coordinate
bond vibrations at room temperature. The results for thelistributions, shown in Fig. 8. In the case of the Coulombic
quantum mean energy for a different number of beads angotential the improvement of the distribution due to inclu-
Fourier components are presented in Fig. 5. For instance, faion of the Fourier harmonics is even more pronounced than
the number of beads=5 any number of Fourier harmonics in the case of harmonic oscillator.
kmax=2 gives results inside the statistical error. Within the  These results demonstrate that without Fourier harmonics
pure bead algorithm, it would be necessary to take severahe method is unable to yield reasonable results even for
hundred beads to reach the same precision. In [Ré}, n extended numbers of beads, At small n, the beads get
=400 was used to simulate a harmonic oscillator at this temeasily stacked near the nucleus due to the strong attraction.
perature and thstagingalgorithm was applied to sample the Without a finite cutoff of potential20), the beads simply
big number of bead degrees of freedom in this system. Theollapse on the nucleus. As a result, at zero Fourier compo-
accuracy achieved in Rgf14] either by staging MD or MC nents and a few dozens of beads, the potential energy is
was about the sam@®.3% as in our work. several times lower than the exact value. Addition of a few
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o4 o Total momenta TABLE Il. Quantum mean energeV) for hydrogen atom pre-
sented for various numbers of beadand Fourier harmonick,,y-
The first row in each cell corresponds to “continuous” estimators,
while the second corresponds to “pure bead” estimators.

— Total momenta(exact)

¢ Central mass momenta

— Central mass )

Number of beads)

= Internal momenta

probability

Kmax 10 20 30 40 50 60

— Internal momenta(exact)

G TE R 0 -—189.8 —161.4 —1167 -59.1 -353 -27.2
-1716 -1329 -91.4 -475 -29.7 -237

1 -161.6 -542 -255 -19.8 -17.8 -16.8
-1250 -394 -213 -17.7 -164 -157

-45 -35 -25 15 -0.5 05 15 25 35 45

(@) momenta 2 —1142 —-240 —-182 -164 -156 -—15.1

00006 - —-76.2 —20.0 —-165 -—-154 -—-149 -146

3 —478 —189 —16.2 -—152 -—147 -—145

0000 1 -325 —-170 —-153 -147 -143 -142

A 4 -284 —172 —-155 -147 -144 -142

8 a' —223 —159 —-148 -142 -141 -140

1 Wu s 5 —-229 -162 -—150 -145 -141 -141

:a’ —-195 —-154 —-146 —-141 -139 -139

g 6 —205 —156 —146 —-143 -140 -13.8

g e -184 -150 -143 -141 -139 -137
0.001 the number of Fourier components is 5 or 6. For a smaller

(b) momenta number of Fourier componentand especially foky,4,=0)

the opposite trend occurs with the average distance being
smaller for smallem. This results from strong attractions
npulling the trajectory closer to the nucleus in the Coulombic
potential well. Addition of Fourier components, even at
smalln, leads to an increase of the average distance up to a
limiting value, corresponding to the case when the trajectory

) o ~correctly describes the electron density around the hydrogen
(5—6) Fourier components allows to reach 1% precision withgiom.

no more than 30 beads.
Table 11l contains information about the average distances
between the beads for different numbers of beads and Fou- V- CONCLUSION
rier harmonics. It is known that when the finite-bead ap- Bead-Fourier path-integral formulation of molecular dy-
proximation is sufficient, this distance should scalead? namics method is presented. In this first paper we have tested
One can see that this dependence more or less holds whéme BF-PIMD method for both quantum harmonic oscillator
and hydrogen atom and demonstrated that it accurately re-

FIG. 6. The comparison of classical momenta distributions for
hydrogen atom with the analytical resulfa) The pairs of simula-
tion results and analytical curves for total, internal, and mass ce
trum momenta(b) The difference between simulation and analyti-
cal total momenta.

Number of beads

10 15 20 25 30 35 40 45 50 55 60

- - 7
20 — Exact
3 ——n=30, {=0
25 4 K|
> max=3(BF)
=30, f=1
2 —+Krmax=6(BF) £ -
5 30 —*=Kmax=3(B) § —en=30, f=3
g —*Kmax=6(B) g ——n=30, f=6
E -35 - — Exact

-50 0 02 0.4 0.6 08 1 12 1.4 16 18 2
coordinate

FIG. 7. The dependences of the quantum mean eregyfor
hydrogen atom on the beads number for numbers of Fourier har- FIG. 8. The quantum coordinate distributions for hydrogen atom
monics 3 and 6 obtained using “continuous” and “pure bead” es- with n=30 and various numbers of Fourier harmonics. Comparison
timators. with the analytical result. Distances are given in A.
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TABLE lIl. Average distances (A) between the beads for hy- L Y
drogen atom for various numbers of beadsnd Fourier harmonics <Epot> = 2 <_f dgv[xj(g)]> (A2)
kmax- j:1 n 0

Number of beadsn and the kinetic energy is

Kmax 10 20 30 40 50 60

0 0.0270 0.0414 0.0750 0.1462 0.1714 0.1717 primy _ N _ Mn 2

1 00373 01736 02196 02113 0.1976 0.1850 Ein >_2,45'(1+|(”“‘X) <,Z‘1 23%2[()('“ X))

2 00919 02513 0.2376 0.2178 0.2008 0.1871 ) ,

3 02154 0.2668 0.2425 0.2198 0.2021 0.1877 +§*(k77) a2 > (A3)
4 02735 02729 0.2445 02213 0.2027 0.1880 &= 2 Gk

5 0.2941 02760 0.2453 0.2214 0.2031 0.1883

6 0.3044 02784 0.2465 0.2221 0.2032 0.1886

The latter result is calledrimitive estimatof 3]. Note that
it does not depend on the potential. It is known that the
produces the properties for which there exist analytical solu¥ncertainty of the primitive estimator is large and grows with
tions. For the pure bead method the center-of-mass therm@€ number of beadf32]. Another estimator without this

stating scheme already reduces the ergodicity promengisadvantage calledrial estimator has been suggesiéa|:
yielding much more stable results compared to the standard

thermostating scheme. Finally, introduction of Fourier har- . 1/.4 (¢

monics eliminates the ergodicity problem completely. The (Epity=— (L f dévix(§)1), (A4)
. . . 2n i=1Jo

averages obtained, using the Bead-Fourier molecular dynam-

ics with pure bead estimators, converge to the exact result
faster than those calculated along the trajectories. where
Comparison of the simulation results with the exact data

obtained analytically shows that after introducing only few Kmax
(often even one single-ourier harmonics considerably im- [ J

g y L= |xj—+ 2> ax— (A5)
proves the results even for a small number of beads. The j=1 IXj k=1 0

combined Bead-Fourier method shows a clear improvement

compared to the pure bead or pure Fourier schemes. Usinge nave mainly used the latter for the kinetic energy.

the BF-PIMD algorithm, the computing time per time stepiS  For the quantum harmonic oscillator the expressions for
roughly proportional to the product of the number of bead%nergy estimators are

and the maximum number of Fourier terms. The optimal

ratio between the numbers of beads and Fourier harmonics n

depends from on the system studied. Although we have not viry L2

done any precise benchmarking, our simulation times show (Biin) = ,Zl 120 L2 XX XX ]
that, e.g., for hydrogen the best results are obtained when the

number of beads is several tim@s-10 larger than the cor- 1 Kmax xj[ajx—(— 1)kaj,l'k] ajzk
responding number of Fourier harmonics. *on gl K Tt
ACKNOWLEDGMENT N aj W[ %= (—1)*;41] ] > , (A6)
The work was supported by the Swedish Research Coun- kar
cil (Vetenskapside?.
L101 )
APPENDIX: ENERGY ESTIMATORS <Ep0t>:jzl 1 Kt XX+ X))
The estimators of the mean kinetic and potential energies Kin " Kmax 2
can be obtained from the Gibbs-Helmholtz equation: +> [x— (=)'} 4 1] +> ajk (A7)
k=1 km k=1 4]
P alinz 1 aC(B)
LI BT i
B B C(B) B Note that according to the virial theorem, E¢a6) and(A7)

9(BUyin) A(BUpod)\ must be equal. In fact, they are, that can be proved using the
+ + =(Exin) +(Epop» properties of cycling summations.
I Ip In the case of the hydrogen atom the expressions for the

(A1)  energy estimators are as follows. The kinetic part remains
unchanged, and we write down the primitive estimator in the
where the potential enerdg4] is appropriate units:
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, n Expressions above correspond to “continuous” estimators in

<El’3irr'1m>=7kBT(1+ Kimax) which the averaging is made along the trajectory. As we
discussed in the text, another possibility is to calculate the
averages from the beads positions only removing the parts of

(Xi,i+1_xi,j)2 the trajectory in between. The expressions for the mean en-
ergies in this case are

(3 [

i=1|j=1

k
max (¢ 2
£ K7 (A8)
e 2 Y )
EXY=(Epop =2, X (A13)
d being the dimensionality. The potential energy estimator (Ekin) =(Epoy = n’

j=1

Col & (1
<Epm>=72<j21 fodgveff[rj(§)1>- (A9)

for harmonic oscillator, and

Then obtaining the virial estimator is straightforward:

3 n 2
i Col o [t Eyiny — 22 ! AL4
(it —5<Lj21 fodgveff[r,-(§>]>, (A10) =7 2 2 | Fo) (A14)
where
3 PR 5 for hydrogen atom. The potential estimator can be obtained
[= L o directly:
L ;1121 Xij axi,-+k21 a""aaijJ’ (A11)
n Clw < fl (1-6)x;j(§) 3 X2
Ev!r - _ < d . S S — ] . =
(Biin n <|21 121 0 §[X.J| rjg(f) Czizl jzl rj3(0)' (&)=
£ a(6)] | aysinkmx(8) N R
ij—1 ijk TE)Kij 2 j
e = =3, ri(&=ro.
+ s o ]+k21 s > T ri(é)=<ry
(A12) (A15)
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